Efficient Gröbner bases computation over principal ideal rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signature-based Criteria for Möller's Algorithm for Computing Gröbner Bases over Principal Ideal Domains

Signature-based algorithms have become a standard approach for Gröbner basis computations for polynomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well understood. In this paper, we present a signature-based algorithm for computing Gröbner bases over principal ideal domains (e.g. the ring of integers or the ring of univariate polynomi...

متن کامل

MDS codes over finite principal ideal rings

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...

متن کامل

Constacyclic Codes over Finite Principal Ideal Rings

In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.

متن کامل

Lexicodes over Finite Principal Left Ideal Rings

Let R be a finite principal left ideal ring. Via a total ordering of the ring elements and an ordered basis a lexicographic ordering of the module R is produced. This is used to set up a greedy algorithm that selects vectors for which all linear combination with the previously selected vectors satisfy a pre-specified selection property and updates the to-be-constructed code to the linear hull o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2021

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2019.10.020